Quasi optimal anticodes: structure and invariants

نویسندگان

چکیده

Abstract It is well-known that the dimension of optimal anticodes in rank-metric divisible by maximum m between number rows and columns matrices. Moreover, for a fixed k , are codes with least rank, among those . In this paper, we study family whose not rank possible dimension, according to Anticode bound. As these anticodes, call them quasi (qOACs). addition, dually qOAC dual also qOAC. We describe explicitly structure qOACs compute their weight distributions, generalized weights, associated q -polymatroids.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal tristance anticodes in certain graphs

For z1, z2, z3 ∈ Z, the tristance d3(z1, z2, z3) is a generalization of the L1-distance on Z to a quantity that reflects the relative dispersion of three points rather than two. A tristance anticode Ad of diameter d is a subset of Z with the property that d3(z1, z2, z3) 6 d for all z1, z2, z3 ∈ Ad. An anticode is optimal if it has the largest possible cardinality for its diameter d. We determin...

متن کامل

The Diametric Theorem in Hamming Spaces-Optimal Anticodes

Ž n . For a Hamming space X , d , the set of n-length words over the alphabet a H 4 n X s 0, 1, . . . , a y 1 endowed with the distance d , which for two words x s a H Ž . n Ž . n x , . . . , x , y s y , . . . , y g X counts the number of different components, 1 n 1 n a we determine the maximal cardinality of subsets with a prescribed diameter d or, in another language, anticodes with distance ...

متن کامل

Homological Invariants and Quasi - Isometry

Building upon work of Y. Shalom we give a homological-algebra flavored definition of an induction map in group homology associated to a topological coupling. As an application we obtain that the cohomological dimension cdR over a commutative ring R satisfies the inequality cdR(Λ) ≤ cdR(Γ) if Λ embeds uniformly into Γ and cdR(Λ) < ∞ holds. Another consequence of our results is that the Hirsch ra...

متن کامل

Quasi-invariants of dihedral systems

A basis of quasi-invariant module over invariants is explicitly constructed for the two-dimensional Coxeter systems with arbitrary multiplicities. It is proved that this basis consists of m-harmonic polynomials, thus the earlier results of Veselov and the author for the case of constant multiplicity are generalized.

متن کامل

L-spectral invariants and quasi-crystal graphs

Introducing and studying the pattern frequency algebra, we prove the analogue of Lück’s approximation theorems on L-spectral invariants in the case of aperiodic order. These results imply a uniform convergence theorem for the integrated density of states as well as the positivity of the logarithmic determinant of certain discrete Schrodinger operators. AMS Subject Classifications: 81Q10, 46L51

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Designs, Codes and Cryptography

سال: 2023

ISSN: ['0925-1022', '1573-7586']

DOI: https://doi.org/10.1007/s10623-023-01188-7